54 sama dengan 9 lebih dari t

Sementarauntuk elektron keduanya akan menempati posisi n=1, l=0, m=0, dan s=-½. Dari contoh di atas dapat terlihat bahwa kedua elektron memiliki nilai n, l, dan m sama, tetapi spin yang dimiliki kedua elektron berbeda. 4. Aturan penuh dan setengah penuh. Aturan ini digunakan sebagai acuan dalam mengisi elektron yang ada pada sub kulit d. TheFederal Reserve is positioned to raise interest rates for the third month in a row. What effect will this have on the recent bitcoin rally? tercepatselama lebih dari setengah abad, (tingkat pertumbuhan rata-rata 8,1% per tahun sejak 1961), dengan total produksi dunia tahun 2007 dilaporkan sebagai 65,2 juta ton senilai Rp . Lebih dari 91,1% dari total produksi global diproduksi di SoalOlimpiade. 1. Pada suatu segitiga ABC, sudut C tiga kali besar sudut A dan sudut B dua kali besar sudut A. Berapakah perbandingan (rasio) antara panjang AB dengan BC ? 2. Suatu persegi panjang berukuran 8 kali 2√2 mempunyai titik pusat yang sama dengan suatu lingkaran berjari-jari 2. Misalnyakita memiliki sampel-sampel dari dua popolasi, yaitu A dan B. Hipotesis nol A dan B mempunyai distribusi sama. Hipotesis pengganti, H 1 yang dipakai untuk menguji H 0 ialah A secara stokastik lebih besar daripada B. Suatu hipotesis yang menunjukkan arah perbedaan. Kita dapat menerima H 1 jika kemungkinan bahwa suatu skor dari A lebih besar dari suatu skor B Site De Rencontre Dans Le 71. Tes psikotes merupakan suatu pemeriksaan psikologi. Fungsi psikotes tes psikologi adalah untuk mengetahui keadaan emosional, motivasi, bakat, kecerdasan, dan sikap seseorang dalam menghadapi suatu hal. Karena itu, hampir di setiap lembaga ataupun perusahaan ketika hendak menerima karyawan baru, tes psikologi selalu dilakukan. Kumpulan contoh soal psikotes ini disusun dengan sangat komprehensif yang meliputi soal-soal psikotes Pengetahuan Dasar, Pemahaman, Analogi, Psikotes Sinonim Antonim, Acak Kata, Pemahaman Teks, Deret Angka, Deret Huruf, Tes Logika Matematika, Tes Numerik, Angka Berkolom, hingga soal-soal Psikotes Gambar. Melalui contoh soal psikotes ini, kamu bisa menghadapi ujian psikotes dengan amat percaya diri. Sebab di dalamnya memuat bentuk bentuk standar soal psikotes yang dipakai sebagai standar ujian psikotes di Pemerintahan, BUMN, Beasiswa Dalam dan Luar Negeri, dan Seluruh Perusahaan di Indonesia. Soal Psikotes Pengetahuan Dasar Satuan hambatan listrik disebut a. Ohm b. Ampera c. Volt d. Watt e. Joule Nama ibu kota negara Libya yaitu … a. Tripoli b. Kairo c. Bagdad d. Tel Aviv e. Teheran Penemu telepon adalah … a. James Watt b. Galileo c. Antonio Santi Giuseppe Meucci d. Thomas Alfa Edision e. Joseph Niepce Pengakuan de jure dari suatu negara terhadap negara yang lain ditandai oleh … a. Bantuan diplomasi b. Kerja sama militer c. Hubungan diplomatik d. Kunjungan kepala negara e. Bantuan ekonomi Dilihat dari segi tujuannya, negara kepolisian bertujuan … a. Meningkatkan kesejahteraan b. Mewujudkan ketertiban c. Memelihara kekuasaan d. Menjamin keamanan e Mempertahankan persatuan Corak negara yang menganut ideologi fasisme mengutamakan … a. Kesejahteraan bersama b. Kemakmuran rakyat c Keadilan sosial d. Ketenteraman masyarakat e Kekuasaan negara Ciri khas negara kesatuan adalah … a. Kepala negaranya adalah seorang presiden b. Kekuasaan asli ada pada pemerintah pusat c. Warga negara mudah berpindah domisili d. Adanya konstitusi yang tertulis e Kepala negaranya dipilih oleh rakyat Apabila didasarkan pada ajaran Trias Politika, yang dikenal dengan teori pemisahan kekuasaan negara, maka penetapan APBN menurut UUD 1945 merupakan campur tangan… a. Presiden dalam kekuasaan Dewan Perwakilan Rakyat b. Dewan Perwakilan Rakyat dalam kekuasaan Presiden c. Presiden dalam kekuasaan Mahkamah Agung d. Mahkamah Agung dalam kekuasaan Presiden e DPR dalam kekuasaan Mahkamah Agung Jika dibandingkan dengan kabinet parlementer, kelebihan kabinet presidentil adalah dalam hal… a. Pembentukan kabinet sangat demokratis b. Jalannya pemerintahan lebih stabil c. Para menteri bertanggung jawab secara kolektif d. Para menteri dapat diganti sewaktu-waktu e. Pemerintahan lebih mencerminkan aspirasi rakyat Dibandingkan dengan berbagai norma sosial lainnya, sanksi norma kesopanan bersumber dari … a. Hatinurani b. Masyarakat c. Tuhan d. Lembaga sosial e. Negara Berikut ini, hal yang termasuk dalam bidang hukum privat adalah … a. Melanggar perjanjian b. Penggelapan barang c. Hubungan antara daerah d. Pelanggaran hukum e Pembunuhan berencana Untuk menarik hati rakyat Indonesia, Jepang membentuk dan melantik Badan Penyidik Usaha Persiapan Kemerdekaan Indonesia BPUPKI pada tanggal … a. 8 Maret 1942 b. 8 September 1943 c. 29 April 1945 d. 29 Mei 1945 e. 14 Agustus 1945 KUNCI JAWABAN PSIKOTES PENGETAHUAN DASAR A. Ohm A. Tripoli C. Antonio Santi Giuseppe Meucci B. Kerja sama militer B. Mewujudkan ketertiban E. Kekuasaan negara B. Kekuasaan asli ada pada pemerintah pusat A. Presiden dalam kekuasaan Dewan Perwakilan Rakyat B. Jalannya pemerintahan lebih stabil A. Hati nurani A. Melanggar perjanjian A. 8 Maret 1942 Tes Psikotes Pemahaman Nilai siapakah yang lebih tinggi dari soal berikut di bawah Nilai Bima lebih jelek dari nilai Ema. Nilai Dian lebih bagus dari nilai Ali. Nilai Bima lebih bagus dari nilai Citra. Nilai Adit sama besar seperti nilai Bima. Nilai Ema lebih kecil dari nilai Dian. a. Nilai Bima b. Nilai Ema c. Nilai Ali d. Nilai Dian Baju siapakah yang paling bersih dari soal berikut Baju Andi lebih kotor dari baju Budi. Baju Budi lebih bersih dari baju Charly. Baju Charly sama bersihnya seperti baju Dani. Baju Budi lebih bersih dari baju Dani. Baju Dani lebih bersih dari baju Andi. a. Baju Budi b. Baju Andi c. Baju Charly d. Baju Dani Siapakah yang lebih tinggi dari soal berikut John lebih rendah dari David. David lebih tinggi dari Richard. Richard sama tingginya seperti Steven. David lebih tinggi dari Steven. Steven lebih tinggi dari John. a. John b. David c. Steven d. Richard Bunga manakah yang paling indah dari soal berikut Bunga Melati sama indahnya seperti bunga Mawar. Bunga Bakung tidak seindah bunga melati. Bunga Mawar tidak seindah bunga sakura. Bunga Melati lebih indah dari bunga Bakung. a. Mawar b. Bakung c. Melati d. Sakura Siapakah yang paling tua di antara soal berikut Adi adalah kakak Tono. Tono mempunyai dua orang adik, yaitu Sari dan Intan. Adi adalah kakak Intan. Intan dan Sari adalah anak kembar. Bowo empat tahun lebih tua dari Adi. Tono dua tahun lebih muda dari Adi. Sari adalah adik Bowo. a. Tono b. Bowo c. Sari d. Adi Semua pekerja harus mengenakan topi pengaman. Sementara pekerja mengenakan sarung tangan. a. Sementara pekerja tidak mengenakan topi pengaman b. Semua pekerja tidak mengenakan sarung tangan c. Sementara pekerja mengenakan topi pengaman dan sarung tangan d. Sementara pekerja tidak mengenakan topi pengaman dan mengenakan sarung tangan Semua anggota asosiasi profesi harus hadir dalam rapat. Sementara dokter adalah anggota asosiasi. a. Semua yang hadir dalam rapat adalah dokter b. Sementara peserta rapat bukan anggota asosiasi profesi c. Sementara peserta rapat adalah dokter d. Semua dokter hadir dalam rapat Semua seniman kreatif. Sementara ilmuwan tidak kreatif. a. Sementara ilmuwan bukan seniman b. Tidak ada seniman yang ilmuwan c. Sementara individu yang kreatif bukan seniman d. Sementara ilmuwan kreatif Tidak semua hipotesis penelitian terbukti benar. Sementara penelitian disertasi tidak menguji hipotesis. a. Sementara doktor tidak menulis disertasi b. Sementara hipotesis disertasi tidak terbukti benar c. Semua hipotesis disertasi terbukti benar d. Semua hipotesis penelitian terbukti benar Pengendara sepeda motor yang lewat jalan protokol harus mengenakan helm. Sementara murid yang bersepeda motor tidak punya helm. a. Semua murid tidak boleh lewat jalan protokol b. Semua murid bersepeda motor boleh lewat jalan protokol c. Semua murid bersepeda motor tidak boleh lewat jalan protokol d. Semua murid bersepeda motor harus mengenakan helm KUNCI JAWABAN PSIKOTES PEMAHAMAN D. Nilai Dian A. Baju Budi B. David D. Sakura B. Bowo C. Sementara pekerja mengenakan topi pengaman dan sarung tangan C. Sementara peserta rapat adalah dokter D. Sementara ilmuwan kreatif B. Sementara hipotesis disertasi tidak terbukti benar D. Sementara murid bersepeda motor boleh lewat jalan protokol Contoh Soal Psikotes Sinonim GAP a. Kecanduan b. Kapitalisme c. Kemerosotan d. Kesenjangan e. Kesalahan DISPLAY a. Pengungkapan b. Melihat c. Bermain d. Peragaan e. Pokok ACCOUNT a. Kas b. Saldo c. Aktiva d. Rekening e. Laporan BROKER a. Komisioner b. Agen c. Pialang d. Pemodal e. Direksi CAPABLE a. Mampu b. Impas c. Bangga d. Gagal e. Kuat INSOLVENT a. Sukses b. Pailit c. Maju d. Berhasil e. Naik daun MERGER a. Penggabungan b. Pemisahan c. Kekuatan d. Hambatan e. Pemecahan REPRESENTATIF a. Menganggur b. Menggantikan c. Mewakili d. Menyatukan e. Memadai TERM a. Bagian b. Masa c. Unsur d. Lembaga e. Pokok USER a. Pengguna b. Bagian c. Pemilik d. Peminjam e. Perantara EVOKASI a. Penggugah rasa b. Penilaian c. Perubahan d. Pengungsian e. Ijin menetap BAKU a. Perkiraan b. Standar c. Umum d. Normal e. Asli PROTESIS a. Hipotesis b. Praduga c. Thesis d. Disertasi e. Buatan KUNCI JAWAB PSIKOTES SINONIM PERSAMAAN KATA D. Kesenjangan D. Peragaan D. Rekening C. Pialang A. Mampu B. Pailit A. Penggabungan C. Mewakili B. Masa A. Pengguna A. Penggugah rasa B. Standar E. Buatan Contoh Soal Psikotes Matematika Deret Angka 3, 5, 8, 12, … a 15 b 16 c 17 d 19 4, 9, 16, 25, 36, … a 64 b 81 c 49 d 100 1, 2, 4, 8, 16, 32, … a 36 b 46 c 48 d 64 18, 20, 24, 32, 48, … a 80 b 81 c 79 d 78 9, 9, 9, 6, 9, 3, …, … a 9,6 b 6,9 c 9,0 d 3,0 2, 5, 3, 6, 4, 7, …, … a 6,9 b 6,8 c 5,9 d 5,8 15, 15, 14, 12, 13, 5, … a O b 1 c 12 d 3 8, 9, 11, 17, 14, …, … a 25, 17 b 31, 16 c 32, 17 d 33, 16 4, 5, 7, 6, 7, 8. 8, … a 9 b 10 c 6 d 7 3, 8, 9, 16, 27, 24, …, … a 81,32 b 36,32 c 81,34 d 36,34 KUNCI JAWABAN TES DERET ANGKA Jawaban C Pembahasan 3, 5, 8, 12,… 3 + x1 = 5, 5 + x2 = 8, 8 + x3 = 12, 12 + x4= ? Dari penjabaran di atas, dapat dengan mudah kita ketahui bahwa nilai x1 = 2, x2 = 3, x3 = 4. Besar penambahan dari x1 ke x2 adalah 1. Begitupun dari x2 ke x3. Maka kita dapat ketahui bahwa x4 adalah 5. Jadi. jawaban yang tepat adalah C 17 Jawaban C Pembahasan perhatikan soal berikut 4, 9, 16, 25, 36, Angka empat untuk menjadi 9 harus ditambah 5. 9 untuk menjadi 16 harus ditambah 7. 16 untuk menjadi 25 harus ditambah 9. 25 untuk menjadi 36 harus ditambah 11. Pola yang terjadi adalah angka yang ditambahkan selalu bertambah dua dari 5 menjadi 7 dan seterusnya. Jadi bilangan penambah selanjutnya, dapat dipastikan adalah 11 + 2 = 13. Maka jawaban yang tepat adalah C 36 + 13 = 49 Jawaban D Pembahasan perhatikan kembali soal berikut 1, 2, 4, 8, 16, 32, Angka selanjutnya merupakan 2x angka sebelumnya. Jadi jawaban yang tepat adalah 64 2 x 32 Jawaban A Pembahasan angka yang ditambahkan merupakan dua kali angka penambahan sebelumnya. Misalnya, untuk menjadi 20 dari 18 maka ditambahkan 2. Nah, 24 merupakan hasil dari 20 ditambahkan angka yang ditambahkan sebelumnya, yakni 2 ditambah dua. Jawaban C Pembahasan setiap angka diselingi dengan Sembilan, dan mundur dengan kelipatan 3. Jawaban D Pembahasan perhatikan soal 2, 5, 3, 6, 4, 7. Jika kita pisahkan maka akan menjadi seperti ini 2,5,3, 6,4, 7 maka untuk mengisi dua angka selanjutnya adalah 5 dan 8. Jawaban C Pembahasan perhatikan kembali soal yang ada. Kalau kita pisahkan kelompok angka tersebut, maka kita akan mendapatkan tiga kelompok angka sebagai berikut 15,15,15,14 dan 15,13. Setelah kita memisahkan kelompok ini, kita dapat mengetahui bahwa angka selanjutnya pastilah satu angka sebelum 13 yakni 12. Jawaban A Pembahasan kita bagi kelompok angka tersebut 8, 9, 11, 17, 14, …, … menjadi dua kelompok, yakni 8, 11, 14, dan 9, 17. Untuk mencari dua angka selanjutnya, kita cukup pola dari kelompok pertama dan kedua. Pola kelompok pertama adalah “tambahkan 8 angka untuk mendapatkan angka berikutnya.” Maka angka selanjutnya adalah 25. Pola kelompok kedua adalah “tambahkan tiga angka untuk mendapatkan angka setelahnya.” Jadi angka selanjutnya adalah 17. Jawaban A Pembahasan angka yang tepat untuk mengisi kelompok 4, 5, 7, 6, 7, 8, 8, adalah angka 9. Jawaban A Pembahasan dua angka untuk mengisi kelompok angka 3, 8, 9, 16, 27, 24, , adalah 81 dan 32. Tes Psikotes Angka Berkolom Isilah kolom yang kosong dengan memilih jawaban yang benar! Bagaimana nilai pada kolom di atas? a. 13 b. 14 c. 15 d. 16 e. 17 Berapa nilai B pada kolom di atas? a. 25 b. 26 c. 27 d. 28 e. 29 Berapa nilai C pada kolom di atas? a. 34 b. 35 c. 36 d. 37 e. 38 Berapa nilai D pada kolom di atas? a. 11 b. 12 c. 13 d. 14 e. 15 Berapa nilai E pada kolom di atas? a. 32 b. 33 c. 34 d. 35 e. 36Perhatikan kolom di bawah ini untuk menjawab soal nomor 6-8! Berapakah nilai A pada kolom di atas? a. 35 b. 27 c. 32 d. 37 e. 41 Berapakah nilai B pada kolom di atas? a. 30 b. 29 c. 40 d. 28 e. 44 Berapakah nilai C pada kolom di atas? a. 340 b. 208 c. 215 d. 190 e. 193Perhatikanlah kolom di bawah ini untuk menjawab soal nomor 9-10! Berapa nilai K pada kolom di atas? a. 8 b. 16 c. 20 d. 17 e. 10 Berapakah nilai L pada kolom di atas? a. 10 b. 29 c. 12 d. 15 e. 7 KUNCI JAWABAN PSIKOTES ANGKA BERKOLOM D. 16 D. 28 B. 35 C. 13 A. 32 D. 37 E. 44 B. 208 B. 16 A. 10 Contoh Tes Psikotes Acak Kata Keras … Batu a. Kepala b. Hati c. Kaki d. Pikiran e. Baja Tangan … Akal a. Tumpul b. Panjang c. Pendek d. Pikiran e. Sehat Kuda … Legam a. Ungun b. Arang c. Hitam d. Abu-abu e. Coklat Gelap … Hati a. Rasa b. Cinta c. Arah d. Mata e. Buta Darah … Langit a. Mendung b. Merah c. Gerah d. Hitam e. Biru Kereta … Unggun a. Uap b. Api c. Asap d. Listrik e. Cahaya Lidah … Darat a. Buaya b. Laut c. Cicak d. Pohon e. Tokek Mati … Tauladan a. Ayah b. Darat c. Suri d. Raja e. Ibu Tunda … Pencaharian a. Mati b. Mata c. Tangan d. Kerja e. Sumber Untung … Bandar a. Besar b. Laba c. Darmaga d. Rugi e. Usaha Batu … Api a. Hitam b. Bara c. Kali d. Merah e. Panas Panjang … Kanan a. Kaki b. Galah c. Hati d. Merah e. Panas Minyak … Topan a. Kelapa b. Cuaca c. Angin d. Petir e. Badai Hukum … Semesta a. Pidana b. Kasus c. Hijau d. Alam e. Rimba Minuman … Hati a. Cair b. Keras c. Luka d. Sehat e. Merah Ilmu … Kelam a. Pengetahuan b. Jiwa c. Gulita d. Gelap e. Hitam KUNCI JAWABAN PSIKOTES ACAK KATA A. Kepala B. Panjang C. Hitam D. Mata E. Biru B. Api A. Buaya C. Suri B. Mata D. Rugi B. Bara D. Tangan C. Angin D. Alam B. Keras E. Hitam Contoh Soal Psikotes Antonim LOKAL a. Jamak b. Tunggal c. Intelektual d. Universal e. Kedaerahan TENANG a. Pasrah b. Gugup c. Teguh d. Kecewa e. Sukses BEBAN a. Biaya b. Pendapatan c. Laba d. Rugi e. Bruto ABSTRAK a. Imajinasi b. Nyata c. Ghaib d. Maya e. Apatis KURIR a. Majikan b. Pembantu c. Agen d. Maya e. Apatis MUSYAWARAH a. Keputusan b. Traktat c. Perjanjian d. Voting e. Kerjasama MEMAKAI a. Menggunakan b. Mengenakan c. Merasa d. Meraba e. Melepas OPINI a. Pendapat b. Fakta c. Gagasan d. Intuisi e. Pandangan KLASIKAL a. Lokal b. Private c. Kelompok d. Kelas besar e. General REWARD a. Hadiah b. Kemenangan c. Hukuman d. Kalah e. Denda KENDALA a. Kekerasan b. Pendukung c. Manifestasi d. Bimbingan e. Gejala EKSRINSIK a. Eksentrik b. Individual c. Konsensus d. Internal e. Keserasian PROMINEN a. Terkemuka b. Pendukung c. Biasa d. Setuju e. Pelapor KUNCI JAWABAN PSIKOTES ANTONIM LAWAN KATA D. Universal B. Gugup B. Pendapatan B. Nyata A. Majikan D. Voting E. Melepas B. Fakta B. Private C. Hukuman B. Pendukung D. Internal C. Biasa Psikotes Numerik Suatu lembaran seng lebarnya 4 2/3 kaki empat dua per tiga kaki. 1 kaki = 30 cm. Seng ini dipotong-potong menjadi beberapa bagian yang masing-masing 4 inchi 1 inchi = 2 ½ cm. Berapakah potongan bagian yang diperoleh dari Iembaran tersebut a. 16 potong b. 12 potong c. 23 potong d. 24 potong e. 14 potong Rumah Amir jaraknya 1½ km dari kantornya, bila ia berjalan rata-rata 4½ km tiap jamnya. Berapa jamkah yang ditempuh untuk berjalan pergi pulang selama satu minggu satu minggu dihitung 6 hari kerja dan ia tidak pernah makan siang di rumah? a. 4 jam b. 6 jam c. 4½ jam d. 24 jam e. 1/3 jam Penjual mengantar 9 mangkuk sup ke sebuah toko. Dia hanya mampu membawa 2 mangkuk sup. Berapakah penjual harus pergi untuk mengantar 9 mangkuk sup tersebut? a. 3 kali b. 4 kali c. 5 kali d. 6 kali e. 9 kali Seorang pembuat jalan harus memasang tegel yang panjangnya 6 dm dan tebalnya 40 cm, ia membutuhkan 600 buah tegel. Berapa meter persegikah jalan itu? a. 240 m² b. 244 m² c. 142 m² d. 144 m² e. 146 m² Nilai Peter termasuk urutan ke 16 dari atas dan juga urutan ke-16 dari bawah dalam kelasnya. Berapakah banyaknya siswa dalam kelas tersebut? a. 16 orang b. 26 orang c. 30 orang d. 31 orang e. 32 orang Seorang memiliki rumah yang harganya Rp Dalam penilaian pajak rumah itu dinilai dua pertiga 2/3 dari harga tersebut di atas pajaknya 12,50 tiap Rp Berapakah pajak yang harus dia bayar? a. Rp b. Rp c. Rp d. Rp e. Rp Bilangan mana yang terbesar? a. ¼ dari 236 b. 1/16 dari 1028 c. 1/13 dari 741 d. 1/11 dari 723 e. 1/12 dari 726 Yang mana yang berlainan? a. 15/16 b. 11/13 c. 2/3 d. 4/7 e. 5/17 ½ + 4X = 10, maka X = a. -9/8 b. 5/2 c. 11/2 d. -19/4 e. 19/8 Yang manakah pecahan di bawah ini yang lebih besar dari 1/3 ? a. 27/82 b. 20/61 c. 23/100 d. 16/45 e. 51/154 Untuk membaca 4 halaman situs Dini butuh waktu x menit. Maka dalam 9 menit Dini mampu membaca berapa halaman? a. 9/4x b. 4x/9 c. 9x/4 d. 9/4 e. 36/x Andre mendapat nilai 81 untuk IPA. Nilai 89 untuk IPS. Nilai 78 untuk Bahasa Indonesia. Dan nilai 86 untuk Matematika. Bila Andre ingin mendapatkan rata-rata nilainya sebesar 84. Maka berapakah nilai yang harus diperoleh untuk pelajaran Bahasa Inggris? a. 88 b. 85 c. 86 d. 84 e. 90 KUNCI JAWABAN PSIKOTES NUMERIK E. 14 potong A. 4 jam C. 5 kali D. 144 m² D. 31 orang C. Rp. D. 1/11 dari 723 A. 15/16 E. 19/8 D. 16/45 E. 36/x C. 86 Tes Psikotes Matematika V2 – 0,56.V1 – 0,64 = … a. b. 1,70 c. 1,80 d. 2,01 2 x 15/3 2/3² = … a. 8 1/3 b. 9 1/3 c. 4 4/9 d. 9 4/9 Berapakan nilai dari a. 108,33 b. c. d. Berapakah 6/7 dari ? a. 125 b. 0,75 c. 2590 d. 38,33 15 37,5% dari … a. 35 b. 40 c. d. V1 – – = … a. 0,92 b. 0,85 c. 0,75 d. 1,50 Berapakah dari 963,7? a. 63,56 b. 635,58 c. 642,5 d. 64,20 204,9 54,7 = … a. 4,77 b. 4,07 c. 4,70 d. 3,74 V6²+ 8² = … a. 48 b. 14 c. 10 d. 9 304,09 64,7 = … a. 0,407 b. 1,07 c. 4,70 d. 0,47 8 x – 2 = … a. 1 b. 23 c. 24 d. 2 10 + 41 + 9 60 = … a. 3 b. 4 c. 1 d. 5 7 x 14 49 + 9= … a. 3 b. 12 c. 14 d. 11 18 x 12 2 + 7 – 87= … a. 22 b. 28 c. 27 d. 26 4 x 9 + 29 – 7= … a. 34 b. 33 c. 58 d. 23 3 x 4 3+4 = … a. 5 b. 4 c. 7 d. 8 KUNCI JAWABAN TES LOGIKA MATEMATIKA C. 80 C. 4 4/9 B. 25,90 B. 0,75 B. 40 D. 1 50 C. 642,5 D. 3,74 C. 10 C. 4,70 A. 1 C. 1 D. 11 B. 28 C. 58 D. 8 Contoh Soal Psikotes Analogi WHITE BOARD SPIDOL a. Pensil Buku b. Kertas Penggaris c. Kanvas Kuas d. Sayap Terbang e. Tas Buku POHON BUAH a. Papantulis Diktat b. Sapi Susu c. Jentik Nyamuk d. Pelanggaran Hukuman e. Kuda Balap LAPAR MAKAN a. Panas Dingin b. NaikTurun c. Capek Istirahat d. Buku Diktat e. Tinggi Rendah HUJAN AIR a. Bukit Tinggi b. Salju Es c. Listrik Panas d. Matahari Bumi e. Laut Danau IMUN IMUNISASI a. Person Personifikasi b. Ego Egois c. Argo Argonomi d. Konvensi Konverensi e. Komunis Komunikasi ASET LIABILITAS a. Rugi Laba b. Miskin Kaya c. Beban Pendapatan d. Tinggi Rendah e. Saham Modal PENGUSAHA LABA a. Deviden Investor b. Buruh Gaji c. Sewa Tanah d. Bunga Pinjaman e. Beban Pendapatan PETANI PADI a. Gaji Karyawan b. Marketer Bonus c. Investor Modal d. Minyak Kelapa e. Investor Devisa DROP OUT MAHASISWA a. Pecat Karyawan b. Makmum Batal c. Murid Tidak lulus d. Anggota DPR Reccal e. Presiden Impeachment MAKANAN KALORI a. Wortel Vitamin b. Minyak Kelapa c. Cemara Kipas d. Lapar Makanan e. Garam Asin HANDPHONE SINYAL a. Mobil Bensin b. Kaos Kaki Sepatu c. Kursi Roda d. Microwave Gelombang e. Kapur Papan GALAKSI PLANET BUMI a. Tanaman Bunga Mawar b. Kuda Bajak Padi c. Mobil Sedan Merah d. Ayah Ibu Anak e. Bulat Kotak Bentuk SULING TIUP a. Mawar Merah b. Piring Gelas c. Bel Dipencet d. Batu Berlian e. Cabai Pedas KUNCI JAWABAN PSIKOTES ANALOGI C. Kanvas Kuas B. Sapi Susu C. Capek Istirahat B. Salju Es A. Person Personifikasi C. Beban Pendapatan B. Buruh Gaji C. Investor Modal A. Pecat Karyawan A. Wortel Vitamin D. Microwave Gelombang A. Tanaman Bunga Mawar C. Bel Dipencet Contoh Soal Psikotes Pemahaman Teks Adri Noor menginvestasikan seperlima dari uangnya untuk membeli perkebunan dan dua perlima dari uangnya untuk membeli properti. Sisanya adalah Rp25 milyar. Berapakah jumlah uangnya semula? a. Rp55 milyar b. Rp55,8 milyar c. Rp62 milyar d. Rp41,6 milyar Naufal berusia 7 tahun lebih tua dari Rizki. Rizki berusia 2 tahun lebih muda dari Hilmy. Berapa tahun selisih usia Naufal dengan Hilmy? a. 7 tahun b. 3 tahun c. 5 tahun d. 6 tahun 1/3 berbanding 5/6 sama dengan … a. 1 berbanding 6 b. 5 berbanding 18 c. 5 berbanding 9 d. 6 berbanding 15 Berapakah jumlah 47 orang dan 9 orang? a. 55 orang b. 56 orang c. 57 orang d. 58 orang Rina menanyakan berapa umurnya dengan pernyataan “Umur saya sekarang tiga kali umur keponakan saya, dan lima tahun yang lalu umur saya lima kali dari umur keponakan saya”. Berapakah umur Rina kalau umur keponakannya sekarang adalah 14 tahun? a. 20 tahun b. 30 tahun c. 35 tahun d. 42 tahun Berapakah yang harus ditabung Farlodrian ke bank, agar dalam waktu 1 tahun uangnya menjadi Rp448 juta. Jika bunga bank 12% per tahun? a. Rp 365 juta b. Rp 400 juta c. Rp 406 juta d. Rp 412 juta Handoyo, Benny, dan Tejo membagi uang. Handoyo mendapatkan 3 kali lebih banyak dari Tejo, Benny mendapat dua kali lebih banyak dari Tejo. Jumlah uang yang dibagikan seluruhnya Rp 900 juta. Maka berapa yang diperoleh Handoyo? a. Rp 270 juta b. Rp 340 juta c. Rp 450 juta d. Rp 570 juta Arie mempunyai uang sebanyak setengah dari uang Jatmiko. Jika Jatmiko memberikan Rp5 milyar kepada Arie, maka Arie akan mempunyai uang Rp4 milyar lebih sedikit daripada uang terakhir Jatmiko. Berapa jumlah uang mereka? a. Rp14 milyar b. Rp27 milyar c. Rp42 milyar d. Rp51 milyar Supiani menyiapkan uang Rp200 milyar untuk investasi baru. Jika untuk investasi tersebut Supiani membeli tiga buah villa dengan harga Rp10 milyar per villa dan membangun 5 hotel dengan biaya Rp25 milyar per hotel. Berapakah sisa uang untuk investasi tersebut? a. Rp40 milyar b. Rp45 milyar c. Rp50 milyar d. Rp55 milyar Indragung membeli 50 ekor sapi senilai per ekor dan 2 bulan kemudian membeli 25 ekor sapi seharga per ekor. Jika Indragung menghendaki harga rata-rata sapinya per ekor, berapakah harga per ekor yang harus dibayar untuk membeli 25 sapi tambahan? a. b. c. d. KUNCI JAWABAN TES PEMAHAMAN TEKS D. Rp41,6 milyar C. 5 tahun C. 5 berbanding 9 B. 56 orang D. 42 tahun B. Rp400 juta C. Rp450 juta C. Rp42 milyar B. Rp45 milyar C. Soal Psikotes Deret Huruf A, C, E, G, … a I b J c K d L A, D, H, M, … a S b T c O d U B, G, K, N, … a S b R c Q d P A. C, F, J, O, … a U b V c T d R A, E, D, E, H, E, …, … a N, E b M, E c L, E d K, E C, F, E, H, G, J, I, L, …, … a M, N b K, N c L, M d P, K D, E, F, I, J, K, N, O, P, … , … , … a T, U, V b Q, R, S c V, W, X d S, T, U B, C, D, P, C, D, E, Q, D, E, F, R, …, …, …, …, a K. K. L. L b E, F, G, S c F, G, H, T d E, F, G, T D, D, B, B, G, G, E, E, J, J, H, H, …, …, …, … a K, K, L, L b N, N, K, K c M, M, K, K d M, M, L, L C, C, D, D, H, H, I, H, M, M, N, M, …, …, …, … a P, Q, P, R b P, P, Q, P c S, S, R, S d R, R, S, R KUNCI JAWABAN TES DERET HURUF A. I A. S B. R A. U B. M. E B. K, N D. S, T, U B. E, F G, S C. M, M, K, K D. R, R, S, R Psikotes Gambar KUNCI JAWABAN PSIKOTES GAMBAR Penutup Psikotes sering dianggap sebagai kendala oleh mereka yang sedang mencari pekerjaan ataupun mendaftar jadi mahasiswa. Banyak yang menganggap psikotes adalah sesuatu yang sulit, bahkan momok yang menakutkan. Pendapat itu tentu saja tidak sepenuhnya benar. Sebab banyak orang yang sebenarnya secara psikologi bagus tapi karena kurangnya memahami soal-soal psikotes membuat ia merasa kesulitan mengerjakannya. Untuk itu, bagi kamu yang belum memahami soal-soal psikotes dan kesulitan menjawabnya, jangan bersedih. Silakan pelajari contoh soal psikotes semua kategori di atas. Dengan usaha dan doa, yakin kamu bakal bisa menyelesaikannya dengan mudah. Metode Statistika II » Pengujian Hipotesis › Uji Hipotesis Rata-Rata Satu Populasi Pengujian Hipotesis Terdapat dua kondisi yang perlu diperhatikan dalam pengujian hipotesis rata-rata satu populasi yakni ketika varians dari populasi diketahui dan ketika varians populasi tidak diketahui. Oleh Tju Ji Long Statistisi Pada artikel ini kita akan membahas pengujian hipotesis untuk rata-rata satu populasi. Terdapat dua kondisi yang perlu diperhatikan yakni ketika varians dari populasi diketahui variance known dan ketika varians populasi tidak diketahui variance unknown. Varians Diketahui Variance Known Misalkan diberikan suatu populasi yang variansnya \^2\ diketahui. Sekarang kita ingin menguji hipotesis bahwa rata-rata populasinya \μ\ sama dengan nilai tertentu \μ_0\ lawan hipotesis alternatifnya bahwa rata-rata populasinya itu tidak sama dengan \μ_0\. Dengan kata lain, kita ingin menguji Statistik uji yang dapat digunakan dalam hal ini adalah peubah acak \\overline{X}\. Dengan mengambil tingkat signifikansi sebesar \α\, kita dapat menemukan dua nilai kritis \\overline{x}_1\ dan \\overline{x}_2\ sedemikian sehingga \\overline{x}_1≤\overline{x}≤\overline{x}_2\ merupakan wilayah penerimaan, dan kedua ekor sebarannya, \\overline{x} \overline{x}_2\, menyusun wilayah kritisnya. Perhatikan bahwa kita biasanya melakukan transformasi \\overline{X}\ ke dalam bentuk statistik uji \Z\ sehingga nilai kritis itu dapat dinyatakan dalam nilai \z\ melalui transformasi berikut Dengan demikian, untuk tingkat signifikansi sebesar \α\, kedua nilai kritis \z\ padanan bagi \\overline{X}_1\ dan \\overline{X}_2\, yakni perhatikan Gambar 1 Gambar 1 Jadi, dari populasi tersebut diambil sebuah sampel acak berukuran \n\ dan dihitung rata-rata sampelnya \\overline{x}\. Bila \\overline{x}\ jatuh dalam wilayah penerimaan \\overline{x}_1≤\overline{x}≤\overline{x}_2\, maka akan jatuh dalam wilayah \-z_{α/2} 2,575\, sedangkan dalam hal ini Perhitungan \\bar{x}= 7,8\ kilogram, \n = 50\, sehingga Keputusan Tolak Ho dan simpulkan bahwa rata-rata kekuatan batang pancing tidak sama dengan 8. Contoh 2 Satu Arah Suatu sampel acak 100 catatan kematian di Amerika Serikat selama tahun lalu menunjukkan umur rata-rata 71,8 tahun, dengan simpangan baku 8,9 tahun. Apakah ini menunjukkan bahwa harapan umur sekarang ini lebih dari 70 tahun? Gunakan taraf nyata 0,05. Pembahasan Dengan mengikuti langkah-langkah dalam prosedur pengujian hipotesis, kita peroleh \H_0μ = 70\ tahun \H_1μ > 70\ tahun \α = 0,05\. Wilayah kritik \z > 1,645\ sedangkan dalam hal ini Perhitungan \\bar{x}= 71,8\ tahun, \ = s = 8,9\ tahun, dan Keputusan Tolak Ho dan simpulkan bahwa harapan umur sekarang ini memang lebih besar daripada 70 tahun Contoh 3 Satu Arah Waktu rata-rata yang diperlukan per mahasiswa untuk mendaftarkan diri pada semester ganjil di suatu perguruan tinggi adalah 50 menit dengan simpangan baku 10 menit. Suatu prosedur pendaftaran baru yang menggunakan mesin modern sedang dicoba. Bila suatu sampel acak 12 mahasiswa memerlukan waktu pendaftaran rata-rata 42 menit dengan simpangan baku 11,9 menit dengan menggunakan sistem baru tersebut, ujilah hipotesis bahwa nilai tengah populasinya sekarang kurang dari 50. Gunakan taraf nyata a 0,05, dan b 0,01. Asumsikan bahwa populasi waktu yang diperlukan adalah normal. Pembahasan Dengan mengikuti langkah-langkah dalam prosedur pengujian hipotesis, kita peroleh \H_0 μ = 50\ menit. \H_1 μ < 50\ menit a \α = 0,05\; b \α = 0,01\ Wilayah kritik a \t < -1,796\; b \t < -2,718\, sedangkan dalam hal ini dengan \v = 11\ derajat bebas. Perhitungan \\bar{x} = 42\ menit, \s = 11,9\ menit, dan \n = 12\. Dengan demikian, Keputusan Tolak Ho pada taraf nyata 0,05 tetapi tidak pada taraf nyata 0,01. Pada hakekatnya ini berarti bahwa nilai tengah sebenarnya kemungkinan besar memang lebih kecil daripada 50 menit, tetapi perbedaannya tidak cukup besar untuk mengimbangi biaya yang tinggi untuk mengoperasikan sebuah komputer. Sumber Walpole, et al. 2012. Probability & Statistics for Engineers & Scientists, 9th ed. Boston Pearson Education, Inc. Ilustrasi penggunaan tanda lebih besar dan lebih kecil, sumber foto matematika, salah satu materi yang dipelajari adalah pertidaksamaan. Materi ini membahas mengenai fungsi dari simbol-simbol dalam matematika, seperti penggunaan simbol tanda lebih besar dan tanda lebih ini akan membahas lebih lanjut mengenai fungsi simbol tanda lebih besar, pengertian pertidaksamaan, hingga contoh soalnya yang bisa Pertidaksamaan dalam MatematikaIlustrasi belajar pertidaksamaan dalam matematika. Foto UnsplashDikutip dari buku Sistem UN Matematika SMP 2009 oleh Sobirin 2009 64, pertidaksamaan adalah kalimat terbuka yang menyatakan hubungan dua hal tidak mempunyai kesamaan atau tidak sama dengan. Hubungan tidak sama dengan dapat dinotasikan menggunakan tanda berikut≤ kurang dari atau sama dengan≥ lebih dari atau sama denganSebagai contoh, jika ada pertidaksamaan x 1 atau x - 4 0, dengan a, b, c konstantaax² + bx + c ", maka x x2Jika tanda pertidaksamaan " 0 dengan notasi > bisa sebagai jika lebih dari, 61, sehingga angka 62 lebih besar >’ dari angka . . . 74. Jawaban dari soal ini adalah 74 = 74, sehingga angka 74 sama dengan =’ dengan angka . . . 72. Jawaban dari soal ini adalah 69 52, sehingga angka 53 lebih besar 78, sehingga angka 81 lebih besar >’ dari angka . . . 100. Jawaban dari soal ini adalah 92 5, dengan begitu angka 8 lebih besar >’ dari angka . . . 67. Jawaban dari soal ini adalah 67 = 67, dengan begitu angka 67 sama dengan =’ dengan angka . . . 96. Jawaban dari soal ini adalah 92 > 96, dengan begitu angka 92 lebih besar >’ dari angka . . . 87. Jawaban dari soal ini adalah 71 61, sehingga angka 79 lebih besar >’ dari angka . . . 80. Jawaban dari soal ini adalah 70 = 70, sehingga angka 70 sama dengan =’ dengan angka . . . 72. Jawaban dari soal ini adalah 65 51, sehingga angka 53 lebih besar 68, sehingga angka 81 lebih besar >’ dari angka . . . 100. Jawaban dari soal ini adalah 95 6, dengan begitu angka 12 lebih besar >’ dari angka . . . 44. Jawaban dari soal ini adalah 44 = 44, sehingga angka 44 sama dengan =’ dengan angka . . . 91. Jawaban dari soal ini adalah 99 > 91, sehingga angka 99 lebih besar >’ dari angka . . . 77. Jawaban dari soal ini adalah 75 < 77, sehingga angka 75 lebih kecil <’ dari angka pembahasan mengenai materi pertidaksamaan tanda lebih besar dan lebih kecil, beserta contoh soalnya untuk latihan. Apa itu pertidaksamaan dalam matematika?Apa yang dimaksud dengan pertidaksamaan pecahan?Apa itu pertidaksamaan linier? Unduh PDF Unduh PDF Di pelajaran Fisika, kamu mungkin pernah menemukan soal perhitungan berat dari massa benda. Tahukah kamu cara menyelesaikan soal ini dengan benar? Jangan khawatir! Dengan rumus yang tepat, perhitungan berat dari massa benda sebenarnya cukup sederhana. Artikel ini akan menjabarkan rumus tersebut, serta menunjukkan cara menggunakannya dengan tepat. Selain itu, ada beberapa contoh soal yang bisa membantu kamu lebih memahami konsep ini. Lanjutkan membaca untuk mempelajari cara menghitung berat dari massa benda dan mempersiapkan diri menghadapi ulangan Fisika. Hal yang Kamu Perlu Ketahui Berat benda sebanding dengan gaya gravitasi yang berlaku. Sementara itu, massa benda selalu sama. Namun, berat benda bisa berubah mengikuti gaya gravitasi. Gunakan rumus untuk menghitung berat dari massa benda. Dalam rumus ini, = berat benda dalam satuan N, = massa dalam satuan kg, dan = percepatan gravitasi dalam satuan m/s2. Oleh karena berat adalah gaya, rumus ini juga sering dituliskan sebagai , dengan = gaya dalam satuan N, = massa dalam satuan kg, dan = percepatan gravitasi dalam satuan m/s2. Percepatan gravitasi di Bumi diketahui sebesar 9,8 m/s2. Nilai ini bisa berbeda di tempat lain, misalnya Bulan dengan percepatan gravitasi = 1,622 m/s2. 1 Gunakan rumus "w = m x g" untuk mengubah berat menjadi massa. Berat didefinisikan sebagai gaya gravitasi pada sebuah benda. Para ilmuwan menyatakan kalimat tersebut dalam bentuk persamaan dengan menuliskan w = m x g, atauw = mg. Karena berat adalah sebuah gaya, para ilmuwan juga menuliskan persamaan sebagai F = mg. F = simbol untuk berat, diukur dalam satuan Newton, N. m = simbol untuk massa, diukur dalam satuan kilogram, atau kg. g = simbol untuk percepatan gravitasi, dilambangkan dengan satuan m/s2, atau meter per sekon kuadrat. Jika kamu menggunakan meter, percepatan gravitasi di permukaan bumi adalah 9,8 m/s2. Ini adalah satuan internasional standar, dan satuan yang sebaiknya kamu gunakan. Jika kamu menggunakan kaki karena kamu harus menggunakannya, percepatan gravitasinya adalah 32,2 kaki/s2. Ini adalah satuan yang sama, hanya saja disusun ulang untuk menggunakan satuan kaki dan bukan meter. 2Carilah massa sebuah benda. Karena kita mencoba mencari berat dari massa, kita tahu bahwa kita sudah memiliki massanya. Massa adalah jumlah dasar materi yang dimiliki sebuah benda dan dituliskan dalam satuan kilogram. 3 Carilah percepatan gravitasinya. Dengan kata lain, carilah g. Di permukaan bumi, g adalah 9,8 m/s2. Di tempat lain di alam semesta, percepatan gravitasi berubah. Guru kamu pasti memberi tahu Anda, atau soal akan menuliskan tempat asal gravitasinya sehingga kamu mengetahuinya. Percepatan gravitasi di bulan berbeda dengan percepatan gravitasi di bumi. Percepatan akibat gravitasi di bulan adalah sekitar 1,622 m/s2, atau sekitar 1/6 kali percepatan di sini, di bumi. Itulah alasan berat kamu di bulan menjadi 1/6 kali berat kamu di bumi. Percepatan gravitasi di matahari berbeda dengan percepatan gravitasi di bumi dan bulan. Percepatan akibat gravitasi di matahari adalah sekitar 274,0 m/s2, atau sekitar 28 kali percepatan di sini, di bumi. Itulah alasan berat kamu di matahari akan menjadi 28 kali berat kamu di bumi jika kamu bisa bertahan hidup!. 4Masukkan angka-angka ke dalam persamaan. Sekarang, karena kamu sudah mendapatkan m dan g, kamu dapat memasukkan nilai-nilai tersebut ke dalam persamaan F = mg dan siap mengerjakannya. Kamu akan mendapatkan sebuah angka yang dituliskan dalam satuan Netwon, atau N. Iklan 1 Selesaikan contoh soal 1. Inilah pertanyaannya "Sebuah benda memiliki massa 100 kilogram. Berapa beratnya di permukaan bumi?" Kita memiliki m dan g. m sama dengan 100 kg, dan g sama dengan 9,8 m/s2, karena kita mencari berat benda di permukaan bumi. Selanjutnya, kita membuat persamaan kita F = 100 kg x 9,8 m/s2. Persamaan ini memberikan jawaban akhirnya pada kita. Di permukaan bumi, sebuah benda dengan massa 100 kg akan memiliki berat kira-kira 980 Newton. F = 980 N. 2 Selesaikan contoh soal 2. Inilah pertanyaannya "Sebuah benda memiliki massa 40 kg. Berapa beratnya di permukaan bulan?" Kita memiliki m dan g. m sama dengan 40 kg, dan g sama dengan 1,6 m/s2, karena kali ini kita mencari berat benda di permukaan bulan. Selanjutnya, kita membuat persamaan kita F = 40 kg x 1,6 m/s2. Persamaan ini memberikan jawaban akhirnya pada kita. Di permukaan bulan, sebuah benda dengan massa 40 kg akan memiliki berat kira-kira 64 Newton. F = 64 N. 3 Selesaikan contoh soal 3. Inilah pernyataannya "Sebuah benda memiliki berat 549 Newton di permukaan bumi. Berapa massanya?" Iklan 1 Jangan sampai salah membedakan antara massa dan berat. Kesalahan yang paling banyak terjadi saat mengerjakan soal adalah salah membedakan massa dan berat. Ingatlah bahwa massa adalah jumlah "materi" dalam suatu benda, yang selalu sama di mana pun kamu meletakkannya. Sementara itu, berat dipengaruhi oleh gaya gravitasi pada "materi" tersebut sehingga akan berubah jika dipindahkan ke luar angkasa. Berikut ini adalah beberapa jembatan keledai untuk membantu kamu membedakan keduanya Massa dinyatakan dalam satuan gram atau kilogram. Baik massa maupun gram mengandung huruf m. Sementara itu, berat dinyatakan dalam satuan newton. Kamu hanya memiliki berat selagi berjalan di bumi. Sementara itu, astronot pun memiliki massa. 2 Gunakan satuan ilmiah. Sebagian besar soal fisika menggunakan newton N sebagai satuan berat, meter per detik kuadrat m/s2 untuk menyatakan gaya gravitasi, dan kilogram kg untuk massa. Jika kamu menggunakan satuan yang berbeda untuk ketiga hal tersebut, kamu tidak bisa menggunakan rumus yang sama. Konversikan semua satuan terlebih dahulu menjadi satuan ilmiah sebelum kamu menggunakannya di dalam persamaan standar. Konversi ini akan memudahkan kamu menghitung jika satuan yang sebelumnya digunakan adalah satuan imperial Misalnya gaya 1 pon = ~4,448 newton 1 kaki = ~0,3048 meter Iklan Tambahan Berat Dituliskan dalam kgf Newton adalah satuan SI. Sering kali berat dituliskan dalam kilogram gaya atau kgf kilogram force. Ini bukanlah satuan SI, sehingga jarang digunakan. Tetapi, satuan ini sangat mudah digunakan untuk membandingkan berat di mana pun dengan berat di bumi. 1 kgf = 9,8166 N. Bagilah besar Newton yang dihitung dengan 9,80665, atau gunakan kolom terakhir jika ada. Berat astronot dengan massa 101 kg adalah 101,3 kgf di Kutub Utara, dan 16,5 kgf di bulan. Apakah satuan SI itu? Satuan SI adalah Satuan Internasional Systeme International d'Unites, sistem satuan metrik pengukuran yang lengkap untuk para ilmuwan. Bagian paling sulit adalah memahami perbedaan antara berat dan massa karena orang-orang cenderung menggunakan kata-kata berat’ dan massa’ secara bergantian. Mereka menggunakan kilogram untuk berat, padahal mereka seharusnya menggunakan Newton, atau setidaknya kilogram gaya. Bahkan dokter kamu mungkin membahas tentang berat Anda, padahal maksudnya adalah massa Anda. Percepatan gravitasi g juga dapat dituliskan dalam N/kg. Lebih tepatnya, 1 N/kg = 1 m/s2. Jadi, angkanya tetap sama. Seorang astronot dengan massa 100 kg memiliki berat 983,2 N di Kutub Utara, dan 162,0 N di bulan. Di sebuah bintang neutron, dia akan menjadi lebih berat lagi, tetapi dia mungkin tidak akan menyadarinya. Timbangan mengukur dalam satuan massa dalam kg, sedangkan skala berdasarkan pegas yang merapat atau merenggang untuk mengukur berat kamu dalam kgf. Alasan Newton lebih sering digunakan dibandingkan kgf yang sepertinya lebih mudah digunakan adalah karena banyak hal-hal yang lain menjadi lebih mudah dihitung ketika kamu mengetahui besar Newtonnya. Iklan Peringatan Istilah berat atom’ tidak berkaitan dengan berat sebuah atom, melainkan berkaitan dengan massanya. Istilah ini mungkin tidak akan diubah karena massa atom’ sudah digunakan untuk sesuatu yang agak berbeda. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? Unduh PDF Unduh PDF Meskipun mudah untuk mengurutkan bilangan cacah seperti 1, 3, dan 8 berdasarkan nilainya, secara sekilas, pecahan mungkin sulit untuk diurutkan. Jika setiap angka di bagian bawahnya, atau penyebut, sama besar, kamu bisa mengurutkannya seperti bilangan cacah, seperti 1/5, 3/5, dan 8/5. Kalau tidak, kamu harus mengubah pecahanmu sehingga memiliki penyebut yang sama, tanpa mengubah nilainya. Hal ini semakin mudah dilakukan dengan banyak berlatih, dan kamu juga bisa mempelajari beberapa trik saat membandingkan dua pecahan saja, atau saat mengurutkan pecahan dengan pembilang yang lebih besar seperti 7/3. 1 Temukan penyebut yang sama besar untuk semua pecahan. Gunakan salah satu cara berikut untuk mencari penyebut, atau angka di bagian bawah pecahan, yang bisa kamu gunakan untuk mengubah semua pecahan, sehingga kamu bisa membandingkannya dengan mudah. Angka ini disebut penyebut yang sama, atau penyebut terkecil yang sama jika merupakan angka terkecil yang memungkinkan [1] Kalikan setiap penyebut yang berbeda. Misalnya, kamu membandingkan 2/3, 5/6, dan 1/3, kalikan dua penyebut yang berbeda 3 x 6 = 18. Ini adalah cara yang sederhana, tetapi sering menghasilkan bilangan yang lebih besar dari cara yang lain, sehingga sulit untuk diselesaikan. Atau buatlah daftar kelipatan setiap penyebut dalam kolom yang berbeda, hingga kamu menemukan bilangan yang sama yang muncul di setiap kolom. Gunakan bilangan ini. Misalnya, membandingkan 2/3, 5/6, dan 1/3, buatlah daftar kelipatan 3 3, 6, 9, 12, 15, 18. Kemudian kelipatan 6 6, 12, 18. Karena 18 muncul di kedua daftar, gunakan bilangan tersebut. Kamu juga bisa menggunakan 12, tetapi cara ini akan menggunakan 18. 2 Ubahlah setiap pecahan sehingga memiliki penyebut yang sama. Ingat, jika kamu mengalikan angka atas dan bawah pecahan dengan bilangan yang sama, nilai pecahan akan tetap sama. Gunakan teknik ini pada setiap pecahan satu per satu sehingga setiap pecahan memiliki penyebut yang sama. Cobalah untuk 2/3, 5/6, dan 1/3, menggunakan penyebut yang sama, 18 18 ÷ 3 = 6, jadi 2/3 = 2x6/3x6=12/18 18 ÷ 6 = 3, jadi 5/6 = 5x3/6x3=15/18 18 ÷ 3 = 6, jadi 1/3 = 1x6/3x6=6/18 3Gunakan bilangan atas untuk mengurutkan pecahan. Karena semua pecahan sudah memiliki penyebut yang sama, kamu akan mudah membandingkannya. Gunakan angka atasnya atau pembilang untuk mengurutkan dari yang terkecil hingga terbesar. Mengurutkan pecahan yang kita temukan di atas, kita mendapatkan 6/18, 12/18, 15/18. 4 Kembalikan setiap pecahan ke bentuk awalnya. Biarkan saja urutan pecahan, tetapi kembalikan ke bentuk awalnya. Kamu bisa melakukannya dengan mengingat-ingat perubahan pecahan, atau dengan membagi bilangan atas dan bawah pecahan lagi 6/18 = 6 ÷ 6/18 ÷ 6 = 1/3 12/18 = 12 ÷ 6/18 ÷ 6 = 2/3 15/18 = 15 ÷ 3/18 ÷ 3 = 5/6 Jawabannya adalah "1/3, 2/3, 5/6" Iklan 1Tuliskan kedua pecahan bersebelahan. Misalnya, bandingkan pecahan 3/5 dan 2/3. Tuliskan keduanya bersebelahan 3/5 di kiri dan 2/3 di kanan. 2 Kalikan bilangan atas pecahan pertama dengan bilangan bawah pecahan kedua. Dalam contoh kita, bilangan atas atau pembilang dari pecahan pertama 3/5 adalah 3. Angka bawah atau penyebut dari pecahan kedua 2/3 juga adalah 3. Kalikan keduanya 3 x 3 = ? Cara ini disebut perkalian silang karena kamu mengalikan bilangan secara diagonal satu sama lain. 3Tuliskan jawabanmu di sebelah pecahan pertama. Tuliskan hasil perkalianmu di sebelah pecahan pertama di halaman yang sama. Misalnya, 3 x 3 = 9, kamu akan menulis 9 di sebelah pecahan pertama, di sisi kiri halaman. 4Kalikan bilangan atas pecahan kedua dengan bilangan bawah pecahan pertama. Untuk mencari tahu pecahan yang lebih besar, kita harus membandingkan jawaban di atas dengan jawaban perkalian ini. Kalikan keduanya. Misalnya, untuk contoh kita membandingkan 3/5 dan 2/3, kalikan 2 x 5. 5Tuliskan jawabannya di sebelah pecahan kedua. Tuliskan jawaban hasil perkalian kedua ini di sebelah pecahan kedua. Dalam contoh ini, hasilnya adalah 10. 6 Bandingkan hasil perkalian silang keduanya. Jawaban dari perkalian ini disebut hasil perkalian silang. Jika salah satu hasil perkalian silang lebih besar dari yang lain, maka pecahan yang ada di sebelah hasil tersebut, lebih besar daripada pecahan yang lain. Dalam contoh kita, karena 9 lebih kecil dari 10, maka artinya 3/5 lebih kecil dari 2/3. Ingatlah, untuk selalu menuliskan hasil perkalian silang di sebelah pecahan yang pembilangnya kamu gunakan. 7 Pahami cara kerjanya. Untuk membandingkan dua pecahan, pada dasarnya, kamu mengubah pecahan agar memiliki penyebut atau bagian bawah pecahan yang sama. Inilah yang dilakukan perkalian silang! [2] Perkalian silang hanya melewati langkah menulis penyebutnya. Karena kedua pecahan akan memiliki nilai penyebut yang sama, kamu hanya perlu membandingkan kedua bilangan atasnya. Berikut contoh kita 3/5 vs 2/3, ditulis tanpa cara singkat perkalian silang 3/5=3x3/5x3=9/15 2/3=2x5/3x5=10/15 9/15 lebih kecil dari 10/15 Sehingga, 3/5 lebih kecil dari 2/3 Iklan 1 Gunakan cara ini untuk pecahan dengan pembilang yang sama atau lebih besar dari penyebutnya. Jika sebuah pecahan memiliki angka atas atau pembilang yang lebih besar dari angka bawah atau penyebut, nilainya lebih besar dari 1. Contoh pecahan ini adalah 8/3. Kamu juga bisa menggunakan cara ini untuk pecahan dengan pembilang dan penyebut yang sama, misalnya 9/9. Kedua pecahan ini adalah contoh pecahan tidak biasa.[3] Kamu masih dapat menggunakan cara lain untuk pecahan ini. Cara ini membantu pecahan terlihat lebih masuk akal, dan lebih cepat. 2 Ubahlah setiap pecahan biasa menjadi pecahan campuran. Ubahlah menjadi campuran bilangan cacah dan pecahan. Terkadang, kamu bisa membayangkannya di kepalamu. Misalnya, 9/9 = 1. Di waktu yang lain, gunakan pembagian yang panjang untuk menentukan berapa kali pembilang dapat dibagi dengan habis oleh penyebut. Jika ada sisa dari pembagian panjang tersebut, bilangan tersebut adalah sisa pecahan. Misalnya 8/3 = 2 + 2/3 9/9 = 1 19/4 = 4 + 3/4 13/6 = 2 + 1/6 3 Urutkan bilangan cacahnya. Sekarang, karena pecahan campuran sudah diubah, kamu bisa menentukan bilangan yang lebih besar. Untuk sementara, abaikan pecahannya, dan urutkan pecahan berdasarkan besar bilangan cacahnya 1 adalah yang terkecil 2 + 2/3 dan 2 + 1/6 kita belum tahu pecahan mana yang lebih besar 4 + 3/4 adalah yang terbesar 4 Jika perlu, bandingkan pecahan dari setiap kelompok. Jika kamu memiliki beberapa pecahan campuran dengan bilangan cacah yang sama, misalnya 2 + 2/3 dan 2 + 1/6, bandingkan bagian pecahannya untuk menentukan pecahan yang lebih besar. Kamu bisa menggunakan cara manapun di bagian lain untuk melakukannya. Berikut adalah contoh membandingkan 2 + 2/3 dan 2 + 1/6, membuat penyebut kedua pecahan sama besar 2/3 = 2x2/3x2 = 4/6 1/6 = 1/6 4/6 lebih besar dari 1/6 2 + 4/6 lebih besar dari 2 + 1/6 2 + 2/3 lebih besar dari 2 + 1/6 5Gunakan hasilnya untuk mengurutkan semua bilangan campuran. Jika kamu sudah mengurutkan pecahan dalam setiap kelompok bilangan campurannya, kamu bisa mengurutkan semua bilanganmu 1, 2 + 1/6, 2 + 2/3, 4 + 3/4. 6Ubahlah bilangan campuran ke bentuk pecahan awalnya. Biarkan urutannya tetap sama, tetapi ubahlah menjadi bentuk awalnya dan tuliskan bilangan dalam pecahan biasa 9/9, 8/3, 13/6, 19/4. Iklan Jika pembilangnya semua sama, kamu bisa mengurutkan penyebutnya secara terbalik. Misalnya, 1/8 < 1/7 < 1/6 < 1/5. Bayangkan seperti piza jika awalnya kamu memiliki 1/2 kemudian menjadi 1/8, kamu membagi piza menjadi 8 bagian bukan 2, dan setiap 1 potongan yang kamu dapatkan lebih sedikit. Saat mengurutkan pecahan dengan bilangan yang besar, membandingkan dan mengurutkan sekelompok kecil angka yang terdiri dari 2, 3, atau 4 bilangan pecahan mungkin akan membantu. Meskipun mencari penyebut terkecil yang sama memang membantu agar kamu dapat menyelesaikan soal dengan bilangan yang lebih kecil, sebenarnya penyebut berapa pun yang sama bisa digunakan. Cobalah mengurutkan 2/3, 5/6, dan 1/3 menggunakan penyebut 36, dan perhatikan apakah jawabaannya sama. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?

54 sama dengan 9 lebih dari t